Soft X-Rays and Extreme Ultraviolet Radiation

Soft X-Rays and Extreme Ultraviolet Radiation
Course covers: Interaction Physics, Radiation by an Accelerated Charge: Scattering by Free and Bound Electrons, Multi-Electron Atom, Atomic Scattering Factors: Wave Propagation and Refractive Index, Refraction and Reflection, Total Internal Reflection, Brewster's Angle, K-K, Multilayer Interference Coatings, Scattering, Reflectivity, Multilayer Mirrors, Coating Process, Applications, Intro Synchrotron Radiation, Bending Magnet Radiation, Undulator Radiation, Undulator Equation, Central Radiation Cone, Undulator Radiated Power, Electron Beam Parameters, Spectral Brightness of Undulator Radiation, Harmonics, Wiggler Radiation, Physics of Plasmas, Basic Parameters, Fluid and Kinetic Descriptions, Line and Continuum Radiation, Waves in a Plasma, Waves in a Plasma, Black-Body Radiation; Plasma Sources, Laser-Produced and Discharge Plasmas: Compact Plasma Sources, High Harmonic Generation, Basic Processes, Quasi-Phasematching, EUV and Soft X-Ray Lasers, Basic Lasing Process, Ne- Like and Ni- Like Lasers, Refractive Effects, Compact EUV Lasers, Cross-Sections, Spectral Bandwidth, Gain, Wavelength Scaling, Spatial and Temporal Coherence, Spatial and Spectral Filtering, Coherent Undulator Radiation, Van Cittert-Zernike; Coherence Experiments, Zone Plate Formulas, Diffraction by Zone Plates and Pinholes, Resolution, DOF, Zone Plate Diffraction, Coherence Issues, Applications of Zone Plate Microscopy, EUV Lithography, Student Projects